c05 JWPR067-Mench January 23, 2008 18:58 Char Count=
282 Transport in Fuel Cell Systems
5. A. Z. Weber, and J. Newman, “Transport in Polymer-Electrolyte Membranes I. Physical Model,”
J. Electrochem. Soc., Vol. 150, No. 7, pp. A1008–A1015, 2003.
6. C. Chuy, V. I. Basura, E. Simon, S. Holdcroft, J. Horsfall, and K. V. Lovell, “Electrochemi-
cal Characterization of Ethylene tetra flouroethylene-g-Polystyrenesulfonic acid solid polymer
electrolytes,” J. Electrochem Soc., Vol. 147, pp. 4458–4453, 2000.
7. T. A. Zawodzinski, Jr., M. Neeman, L. O. Sillerud, and S. Gottesfeld, “Determination of Water
Diffusion Coefficients in Perflourosulfonate Ionomeric Membranes,” Vol. 95, pp. 6040–6044,
1991.
8. M. Doyle, M. E. Lewittes, M. G. Roelofs, and S. A. Perusich, “Ionic Conductivity of Nonaque-
ous Solvent-Swollen Ionomer Membranes Based on Flourosulfonate, Flourocarboxylate, and
Sulfonate Fixed Ion Groups,” J. Phys. Chem. B., Vol. 105, pp. 9387–9394, 2001.
9. F. N. Buchi and G. G. Scherer, “Investigation of the Transversal Water Profile in Nafion Mem-
branes in Polymer Electrolyte Fuel Cells,” J. Electrochem Soc., Vol. 148, pp. A183–A188,
2001.
10. A. Z. Weber and J. Newman, “Transport in Polymer-Electrolyte Membranes,” J. Electrochem.
Soc., Vol. 151, p. A311–A325, 2004.
11. J. T. Hinatsu, M. Mizuhata, and H. Tekenaka, “Water Uptake of Perfuorosulfonic Acid Mem-
branes from Liquid Water and Water Vapor,” J. Electrochem. Soc., Vol. 141, p. 1493–1498,
1994.
12. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,”
J. Electrochem. Soc., Vol. 138, pp. 2334–2342, 1991.
13. N. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, New York,
1995.
14. O. Yamamoto, “Low Temperature Electrolytes and Catalysts,” in Handbook of Fuel
Cells—Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, and H. A. Gasteiger,
Eds., Wiley, New York, 2003, pp. 1002–1014.
15. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemisty, Wiley-VCH, New York, 1998.
16. X. Li, Principles of Fuel Cells, Taylor and Francis, New York, 2006.
17. J. Larmine and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, New York, 2003.
18. M. F. Mathias, J. Roth, J. Fleming, and W. Lehnert, “Diffusion Media Materials and Characteri-
zation,” in Handbook of Fuel Cells—Fundamentals, Technology and Applications, W. Vielstich,
A. Lamm, and H. A. Gasteiger, Eds., Wiley, New York, 2003, pp. 517–537.
19. E. L. Cussler, Diffusion-Mass Transfer in Fluid Systems, 2nd ed., Cambridge University Press,
New York, p. 101, 1997.
20. M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd ed., Wiley,
New York, 1995.
21. J. C. Slattery and R. B. Bird, “Calculation of the Diffusion Coefficient of Dilute Gases and of the
Self-Diffusion Coefficient of Dense Gases,” AIChE J., Vol. 4, pp. 137–142, 1958.
22. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York,
2002.
23. E. N. Fuller, P. D. Schettler, and J. C. Giddings, Ind. Eng. Chem., Vol. 58, p. 19, 1966.
24. H. S. Salem, and G. V. Chilingarian, “Influence of Porosity and Direction of Flow on Tortuosity
in Unconsolidated Porous Media,” Energy Sources, Vol. 22, pp. 207–213, 2000.
25. H. T. Bach, B. A. Meyer, and D. G. Tuggle, “Role of Molecular Diffusion in the Theory of Gas
Flow Through Crimped-Capillary Leaks,” J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and
Films, Vol. 21, No. 3, pp. 806–813, 2003.