
20-1
10
processing,”
IEEE Trans. on Electron Devices,
Vol. 39, No. 1, 1992, p. 4.
50. Moslehi, M., Kuehne, J., Velo, L., Yin, D., Yeak-
ley, D., Huang,
S.,
Jucha, B., and Breedijk, T.
“RTP for advanced CMOS process integration.”
Proc. of SPIE
on
Rapid Thermal and Integrated
Processing,
1992.
51. Moslehi, M., Kuehne,
J.,
Yealdey, R., Velo, L.,
Najm, H., Dostalik, B., Yin, D., and Davis, C.
“In-situ fabrication and process control tech-
niques in rapid thermal processing.”
MRS Proc.
on Rapid Thermal and Integrated Processing,
Vol. 224, 1991, p. 143.
52. Moslehi, M. M. “Process uniformity and slip dis-
location patterns
in
linearly ramped-temperature
transient rapid thermal processing of silicon.”
IEEE Trans.
on
Semiconductor Manufacturing,
Vol. 2, No. 4, 1989, p. 130.
53. Gyurcsik, R.
S.,
Riley, T. J., and Sorrell, F. Y.
IEEE Trans.
on
Semiconductor Manufacturing,
Vol. 4, No. 1, 1991, p. 9.
54. Campbell,
S.,
Knutson, K., Ahn, K., Leighton, J.,
and Liu, B. “Gas flow patterns and thermal uni-
formity in rapid thermal processing equipment.”
IEDM Tech. Dig.,
1990, p. 921.
55.Sorre1, F.
SRC workshop
on
temperature mea-
surement,
Santa Fe, New Mexico, Feb. 1990.
56. Nulman,
J.,
Cohen, B., Blonigan, W., Antonio,
S.,
Meinecke, R., and Gat, A. “Pyrometric emissivity
measurements and compensation in an RTP
chamber.”
MRS Symp. Proc.,
Vol. 146, 1989, p.
461.
57. Sato, T.
Jpn.
J.
Appl.
Phys.,
Vol. 6, 1967, p. 339.
58. Gelpey,
J.,
and Liao,
J.
“Integrated temperature
control with automatic emissivity compensation
for RTP.”
SRC workshop on temperature mea-
surement,
Santa Fe, New Mexico, Feb. 1990.
59. Kamins, T., Bradbury, D., Cass, T., Laderman, S.,
and Reid, G. “Structure of LPCVD tungsten films
for IC applications.”
J.
Electrochem. SOC.,
Vol.
131, Dec. 1986, p. 2555.
60. Kern, W. “The evolution of silicon cleaning tech-
nology.”
Proc.
of
the First International Symp.
on
Cleaning Technol. in Semiconductor Device Mfg.
(The Electrochem. SOC.),
Vol. 90-9, 1989,
p.
3.
61. Deal,
B.,
and Kao,
D.
“The physics and chemistry
of
thin native oxide
films
on silicon,”
Mat. Res.
SOC. Symp.,
1987.
62. Moslehi, M., Shatas, S., Saraswat, K., and Meindl,
J. “Interfacial and breakdown characteristics of
MOS devices with rapidly grown ultra-thin Si02
gate insulators.”
IEEE Trans. Electron Devices,
63. Morita, M., Ohmi, T., Hasegawa, E., Kawakami,
M., and Suma, K. “Control factor
of
native oxide
growth
on
silicon in air
or
in ultra-pure water.”
Appl.
Phys. Lett.,
Vol. 55, No. 6, 1989, pp. 562-
564.
64. Hirashita, N., Kinoshita, M., Aikawa,
I.,
and
Ajioka, T. “Effects of surface hydrogen
on
the
air
Vol.
ED-34,
NO. 6, 1987, pp. 1407-1410.
oxidation at room temperature of HF-treated
Si(100) surfaces.”
Appl.
Phys. Lett.,
Vol. 56,
No.
5, 1990, pp. 451453.
65. Crabbe, E., Hoyt,
J.,
Moslehi, M., Pease, R., and
Gibbons, J. “Reduced process sensitivity
of
poly-
silicon emitter contacts for VLSI bipolar transis-
tors.”
Symp. on VLSI Technol. Dig. Tech. Papers,
66. Burrows, V., Chabal, Y., Higashi, G., Raghavva-
chari, K., and Christman,
S.
“Infrared spectros-
copy of
Si(ll1)
surfaces after HF treatment:
Hydrogen termination and surface morphology.”
Appl.
Phys. Lett.,
Vol. 53, No. 11, 1988, pp. 998-
1000.
67. Miyauchi, A., Inoue, Y., and Suzuki,
T.
“Interface
impurities
of
low-temperature (900
“C)
deposited
Si epitaxial films prepared by HF treatments.”
Appl.
Phys. Lett.,
Vol. 57, No. 7, 1990, p. 676.
68. Friedrich,
J.,
and Neudeck, G. “Limitations
in
low-temperature silicon epitaxy due
to
water
vapor and oxygen in the growth ambient.”
Appl.
Phys. Lett.,
Vol. 53,
No.
25, 1988, pp. 2543-2545.
69. Ruzyllo,
J.,
Hoff,
A., Frystak,
D.,
and Hossain,
S.
“Electrical evaluation
of
wet and
dry
cleaning
procedures for silicon device fabrication.”
J.
Electrochem. SOC.,
Vol. 136, No. 5, 1989, pp.
1474-1476.
70. Mieno, F., Nakamura,
S.,
Deguchi,
T.,
Maeda,
M., and Inayoshi, K. “Low temperature silicon
epitaxy using Si,H,.”
J.
Electrochem. SOC.,
Vol.
134,
No.
9,1987, pp. 2320-2323.
7
1.
Yamazaki, T., Minakata, H., and Ito, T. “Continu-
ous
growth
of
heavily doped p+-ncSi epitaxial
layer using low-temperature photoepitaxy.”
Appl.
Phys. Lett.,
Vol.
55,
No.
9, 1989, pp. 879-881.
72. Yamazaki, T., Watanabe, S., and Ito, T. “Heavy
boron doping in low-temperature Si photoepit-
axy,”
J.
Electrochem. SOC.,
Vol. 137, No. 1, 1990,
73. Meyerson, B., LeGoues,
E,
Nguyen, T., and
Harame, D. “Nonequilibrium boron doping
effects in low-temperature epitaxial silicon films.”
Appl.
Phys. Lett.,
Vol.
50,
No.
2, 1987, pp. 113-
115.
74. Meyerson,
B.,
Uram, K., and LeGoues,
E
“Coop-
erative growth phenomena in silicon/germanium
low-temperature epitaxy.”
Appl.
Phys. Lett.,
Vol.
75. Shibata, T., Kondo,
N.,
and Nanishi, Y. “Si sur-
face cleaning and epitaxial growth of GaAs on
Si
by electron cyclotron resonance plasma-excited
molecular-beam-epitaxy at low temperatures.”
J.
Electrochem. SOC.,
Vol. 136, No. 11, 1989, pp.
76. Salimian,
S.,
Cooper, C., and Ellingboe, A. “Etch-
ing of SiO, in an electron cyclotron resonance
argon plasma.”
Appl.
Phys. Lett.,
Vol. 56, No. 14,
77. Moslehi M., and Davis, C. “Advanced epitaxial Si
and Ge,Si,, multiprocessing for semiconductor
1987, pp. 33-34.
pp. 313-318.
53,
NO.
25,1988, pp. 2555-2557.
3459-3462.
1990, pp. 1311-1313.