
function restricted to the interval [0, π]. Then, as Figure 5 shows, x / Cos(x)isa
one-to-one function. It takes on all the values in the interval [21, 1]. Thus Cos : [0,
π] - [21, 1] is both one-to-one and onto, hence invertible. Its inverse function,
Cos
21
:[21, 1] - [0, π], is decreasing, one-to-one, and onto. The inverse cosine
x / Cos
21
(x) is also called the arccosine and denoted by arccos (x ). We reflect the
graph of y 5 Cos(x ) in the line y 5 x to obtain the graph of y 5 Cos
21
(x). The result
is shown in Figure 6.
⁄ EX
AMPLE 2 Calculate arccosð2
ffiffiffi
2
p
=2Þ, arccos (0), and arccosð
ffiffiffi
3
p
=2Þ.
Solution We
calculate as in Example 1 except that here we are looking for values
in the interval [0, π]. We have arccosð2
ffiffiffi
2
p
=2Þ5 3π=4; arccosð0Þ5 π=2, and arccos
ð
ffiffiffi
3
p
=2Þ5 π=6.
¥
THEOREM 1
The functions t / arcsin ( t) and t / arccos (t) are differentiable
on the open interval (21, 1) and
d
dt
arcsinðtÞ5
1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 t
2
p
ð3:10:1Þ
and
d
dt
arccosðtÞ52
1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 t
2
p
: ð3:10:2Þ
Proof. For t in
the open interval (21, 1), let s 5 arcsin (t). Then s is in the open
interval (2π/2, π/2) and cos (s) is positive. Using this observation together with the
identity cos
2
(s) 5 1 2 sin
2
(s), we calculate that
cosðsÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ffiffi
cos
2
ðsÞ
q
5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 sin
2
ðsÞ
q
5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2
sin
arcsinðtÞ
2
r
5
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 t
2
p
:
We may now obtain the formula for the derivative of arcsin (t) by using the
Inverse Function Deri vative Rule that we learned in Section 3.6:
d
dt
arcsinðtÞ5
1
d
ds
sinðsÞj
s5arcsinðtÞ
5
1
cosðsÞj
s5arcsinðtÞ
5
1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 2 t
2
p
:
The derivative of arccos (t) is calculated in the same way. ’
From formula (3.10.1), we see that arcsin
0
(t) . 0. In Chapter 4, we will learn
that this inequality is the analytic characterization of a graphical property that we
have already observed: The inverse sine is an increasing function. Similarly, for-
mula (3.10.2) shows that arccos
0
(t) , 0 for all t A (21, 1). In Chapter 4, we will learn
that this inequality implies that the inverse cosine is a decreasing function, which
we have already observed from its graph.
⁄ EX
AMPLE 3 Calculate
d
dx
arcsinðxÞ
x50
and
d
dx
arccosðxÞ
x51=2
:
1
1
y
x
y Cos(x)
2
m Figure 5
y
x
1
1
1
1
y Cos(x)
y x
y arccos(x)
m Figure 6
3.10 Other Transcendental Functions 255