
the origin. The boat is pulled by the tether as in Figure 22.
Show that the tip of the boat moves along a tractrix.
Tractrix
Tether
a
T(x) a sech
1
a
2
x
2
x
a
m Figure 22
72. The
velocity of a water wave of wavelength λ as a func-
tion of the depth d of the water is given by
v 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
2π
λtanh
2πd
λ
s
:
Use the linear approximation of tanh (x)atx 5 0 to show that
vðdÞ
ffiffiffiffiffiffi
gd
p
for small d. By considering the horizontal asymp-
tote of the hyperbolic tangent, show that v
ffiffiffiffiffiffiffiffi
g
2π
λ
q
for large d.
The gudermanian function gd defined by
gdðuÞ5 arctanðsinhðuÞÞ
links the usual trigonometric functions and the hyperbolic
functions. Exercises 7375 concern
the gudermanian.
73. Show
that
coshðuÞ5 secðgdðuÞÞ
tanhð uÞ5 sinð gdðuÞÞ
cothðuÞ5 cscðgdðuÞÞ
sechðu Þ5 cosð gdðuÞÞ
cschðuÞ5 cotðgdðuÞÞ:
74. Show that gd
0
ðuÞ5 sechðuÞ.
75. Use the Inverse Function Derivative Rule to show that
d
dθ
gd
21
ðθÞ5 secðθÞ:
c A real-valued function f of
a real variable x is said to be
algebraic if there is a polynomial p(u, v) with integer coeffi-
cients such that p(x, f (x)) 5 0 for all x. For example, f (x) 5
2x1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 1
p
is algebraic because
pðx; f ðxÞÞ5 3x
2
1
2x1
ffiffiffiffiffiffiffiffiffiffiffi
x
2
11
p
2
2 4x
2x 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 1
p
2 1
0
for p(u, v) 5 3u
2
1v
2
2 4uv 2 1. A function that is not alge-
braic is said to be transcendental. In Exercises 7679,
find a
polynomial that shows that the given expression is
algebraic. b
76. x2
ffiffi
ffi
2
p
77.
ffiffiffi
x
p
1
ffiffiffi
3
p
78. 2 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 x=x
p
79.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1
ffiffiffi
x
p
3
p
Calculator/Computer Exercises
c In Exercises 8085, use a central difference quotient to
approximate f
0
ðcÞ for the given f and c. Plot the function and
the tangent line at (c, f (c)). b
80. f (x) 5 arcsin
x
2
x
2
1 1
, c 5 1.3
81. f (x) 5 x arcsec (11x
4
), c 5 2.1
82. f (x) 5 arcsin (2 arctan (x)/π), c 5 1.7
83. f ðxÞ5 sinh
x
1 1
ffiffiffi
x
p
, c 5 4.5
84. f (x) 5 arccos (tanh(x)), c 5 0.7
85. f (x) 5 sinh
21
(log
2
(x)), c 5 2.5
86. Graph the six hyperbolic functions in the rectangle
[0, 1.5] 3 [0, 2]. Identify the seven points of intersection in
the first quadrant.
87. The Gudermannian function gd is defined on the real line
by gd(u) 5 arctan (sinh (u)). Its inverse gd
21
is defined on
(2π/2, π/2).
a. Graph gd.
b. Graph gd
21
by means of the parametric equations
x 5 gd(t) and y 5 t.
Summary of Key Topics in Chapter 3
Instantaneous Velocity
(Section 3.1)
If the position of a moving body at time t is
given by a function p(t), then the
quantity
lim
Δt-0
pðt 1 ΔtÞ2 pðtÞ
Δt
;
if it exists, is called the instantaneous velocity of the moving body.
268 Chapter 3 The Derivative