
1. f (x) 5 x
3
2 3x
2
2 9x 1 7
2. f (x) 5 x
3
(x 2 8)
3. f (x) 5 (x 1 1)(x 2 2)
2
4. f (x) 5 x
5
2 6x
4
1 8x
3
5. f (x) 5 x/(x
2
1 4)
6. f (x) 5 (x 1 1)/(x 2 1)
7. f (x) 5 (x
2
1 4)/(x
2
2 4)
8. f (x) 5 (x 1 1)/(x 1 2)
2
9. f (x) 5 x
2
2 x
1/2
10. f (x) 5 x/(x 2 4)
2
11. f (x) 5 sin (x) 2 x
12. f (x) 5 cos (x) 2 sin (x)
13. f (x) 5 ( x
1/3
1 1)/x
14. f (x) 5 x
2 4/3
(x 1 2)
15. f (x) 5 x
1/3
/(x 1 3)
16. f (x) 5 ( x
3
2 12x)/(x
2
1 4)
17. f (x) 5 x (x 1 1)
1/5
18. f (x) 5 |x|/(x 1 1)
19. f (x) 5 x
1/3
(x 2 2)
20. f (x) 5
ffiffiffi
x
p
=ð
ffiffiffi
x
p
2 1Þ
21. f (x) 5
ffiffiffi
x
p
/(x 1 1)
22. f (x) 5 x 1 54/
ffiffiffi
x
p
23. f (x) 5 x
2
1 16/x
24. f (x) 5 1/x 2 1/x
2
Further Theory and Practice
c Sketch the graph of each of the functions in Exercises
25240,
exhibiting and labeling: a) all local and global
extrema; b) inflection points; c) intervals on which the func-
tion is increasing or decreasing; d) intervals on which the
function is concave up or concave down; e) all horizontal and
vertical asymptotes. b
25. f (x) 5 x
1/3
/(x 2 4)
26. f ðxÞ5
1
2
x
2=3
2 x
1=3
27. f (x) 5 x
2
(1 2 x
2
)
1/2
28. f (x) 5 x
2
/(x
1/3
1 8)
29. f (x) 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
1 8x 1 18
p
/x
30. f (x) 5 |x
2
2 9|
31. f (x) 5 (x 2 5)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jx 1 2j
p
32. f (x) 5 cos
4
(x), 0 , x , 2π
33. f (x) 5 (x
3
1 x 1 1)/x
34. f (x) 5 sin (x) 1 tan (x), 2 π , x , π
35. f (x) 5 tan (x) 1 sec (x)
36. f (x) 5 |x
1/3
2 4|
37. f (x) 5 |x| (x 1 1)
2
38. f (x) 5 (x 1 1)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21Þ
2
q
39. f (x) 5 (13x 1 14)/(x
2
2 1)
40. f (x) 5 (3x 1 2)/|x
2
2 1|
c In Exercises 41 and 42,
follow the instructions for Exer-
cises 25240. Additionally, determine the skew-asymptote of
the given function. b
41. f (x) 5 ( x
2
2 4)/(2x)
42. f (x) 5 ( x
3
1 x
2
1 2)/x
2
43. Suppose that f : R-R is twice differentiable and f
00
(x) $ 1
for all x. Prove that the graph of f cannot have any hor-
izontal asymptotes.
44. A graph is called symmetric with respect to the y-axis if
(2x, y) lies on the graph whenever (x, y) lies on the graph.
We test for symmetry with respect to the y axis by
replacing x with 2 x in the equation for the graph. If the
equation remains unchanged, the symmetry property
holds. Explain the reasoning behind this test. A graph is
called symmetric with respect to the origin if (2x, 2y) lies
on the graph whenever (x, y) lies on the graph. We test for
symmetry with respect to the origin by replacing x with
2x and y with 2y in the equation for the graph. If the
equation remains unchanged, the symmetry property
holds. Explain the reasoning behind this test. Test each of
the following for symmetry in the y-axis and symmetry
in the origin. Give a sketch of each graph.
a. 9y
2
2 x
2
5 36
b. x
3
1 y
2
5 4
c. x
2
2 4y
2
5 16
d. x 1 sin (y) 5 3y
Calculator/Computer Exercises
c Follow the outline given in this section to give a careful
sketch of the graph of each of the functions in Exercises
45254.
Your sketch should exhibit, and have labeled, all of
the following: (i) all local and global extrema, (ii) inflection
points, (iii) intervals on which function is increasing or
decreasing, (iv) intervals on which function is concave up or
concave down, (v) all horizontal, vertical, and skew-
asymptotes. b
45. f (x) 5 x
4
1 6x
3
1 x
2
1 x 2 4
46. f (x) 5 x
5
1 x
3
1 2x
2
47. f (x) 5 x
5
1 x
4
2 5x
3
2 5x
2
1 6x 1 6
48. f ðxÞ5
ðx 2 1Þðx 2 4Þ
ðx 2 3Þðx 2 2Þ
49. f ðxÞ5 x
2
1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 x
2
p
50. f ðxÞ5
ðx 2 3Þ
2
ðx 2 4Þ
ðx 2 3Þðx 2 2Þ
51. f ðxÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 2 x
2
p
x
2
1 1
52. f ðxÞ5
x
3
1 x 1 1
x
2
1 4x 1 5
53. f ðxÞ5
x
3
1 20x 1 15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 1 x
2
p
54. f ðxÞ5
x
2
2 x 1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
4
1 2x
2
1 2
p
4.6 Graphing Functions 337