
63. lim
x-N
5 1 x
2 1 x
x
64. lim
x-0
11 sinðxÞ
cscðxÞ
Further Theory and Practice
65. Use l’Ho
ˆ
pital’s Rule to check that lim
h-0
1
ð1 1 hÞ
1=h
5 e:
Now calculate lim
h-0
1
ð1 1 hxÞ
1=h
for any fixed x.
66. Use l’Ho
ˆ
pital’s Rule to calculate
lim
h-0
f ðx 1 hÞ2 2f ðxÞ1 f ðx 2 hÞ
h
2
for a function f that is twice continuously differentiable at x.
67. Let a and b be constants with b 6¼1. Use l’Ho
ˆ
pital’s Rule
to calculate
lim
x-0
a sinðxÞ2 sinðaxÞ
tanðbxÞ2 b tanð xÞ
:
68. For any real number k and any positive number a prove
that
lim
x- 1N
x
k
e
ax
5 0:
c In each of Exercises 69276, use l’Ho
ˆ
pital’s
Rule to eval-
uate the one-sided limit. b
69. lim
x-ðπ=2Þ
2
ðx 2 π=2ÞcotðxÞ
70. lim
x-π
1
ðx 2 πÞtanðx=2Þ
71. lim
x-0
1
ln ð1 1 xÞ
ln ð1 1 3xÞ
72. lim
x-0
1
sinðxÞ
ln ð1 1 xÞ
73. lim
x-0
1
2lnðxÞ
ln ð2xÞ
74. lim
x-0
1
lnð1 1 xÞln ðxÞ
75. lim
x-0
1
x
21=ln ðxÞ
76. lim
x-0
1
x
5=ln ð2xÞ
c In each of Exercises 77282, a function f with domain either
I 5 (2N, N)orI 5 (0,N) is given. Sketch the graph of f. (The
set C of critical points of f and the set I of inflection points of
f are provided in some cases.) Use l’Ho
ˆ
pital’s Rule to deter-
mine the horizontal asymptote of the graph. If I 5 (0, N), use
l’Ho
ˆ
pital’s Rule to determine lim
x-0
1
f ðxÞ: b
77. f (x) 5 x/e
x
; I 5 (2N, N)
78. f (x) 5 x
2
/e
x
; I 5 (2N, N)
79. f (x) 5 e
x
/(e
x
1 x); I 5 (2N, N); I 5 {2.269 ...}
80. f (x) 5 ln (x)/x; I 5 (0, N)
81. f (x) 5 x ln (x)/(1 1 x
2
); I 5 (0, N); C 5 {0.301..., 3.319...};
I 5 {0.720..., 5.486...}
82. f (x) 5 ln (x)/(1/x 1 e
x21
); I 5 (0,N); C 5 {0.730 ...}; I 5
{1.646 . . . }
83. Suppose that r is a constant greater than 1. Let α be any
constant. Show that
lim
x-N
x
α
r
x
5 0:
Deduce that
lim
x-N
a r
x
1 pðxÞ
b r
x
1 qðxÞ
5
a
b
:
for any polynomials p (x) and q (x) and any constants a
and b with b 6¼0.
84. Evaluate
lim
x-N
x
ðx11Þ=x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 x
2
p
:
85. For any constants α and β with β . 0, show that
lim
x-N
ln ðxÞ
α
x
β
5 0:
86. Cauchy’s Mean Value Theorem states the following: If
f (x) and g (x) are functions that are continuous on the
closed interval [a, b] and differentiable on the open
interval (a, b), then there is a point ξ 2 (a, b) such that
ðgðbÞgðaÞÞ f
0
ðξÞ¼ðf ðbÞf ðaÞÞ g
0
ðξÞ. Notice that, if
both g(a) 6¼g(b) and g
0
(ξ) 6¼0, then
f
0
ðξÞ
g
0
ðξÞ
5
f ðbÞ2 f ðaÞ
gðbÞ2 gðaÞ
:
Complete the following outline to obtain a proof of
Cauchy’s Mean Value Theorem
a. Let rðxÞ5
f ðbÞ2 f ðaÞ
gðxÞ2 gðaÞ
2
f ðxÞ2 f ðaÞ
gðbÞ2 f ðaÞ
:
Check that r (a) 5 r (b).
b. Apply Rolle’s Theorem to the function r on the interval
[a, b] to conclude that there is a point ξ 2(a, b)such
that r
0
(ξ) 5 0.
c. Rewrite the conclusion of (b) to obtain the conclusion
of Cauchy’s Mean Value Theorem.
87. Write the equation of the line through the points (g(a),
f (a)) and (g(b), f (b)). If P 5 (x, y) is a point in the plane
then calculate the vertical distance from P to this line.
Now give a geometric interpretation of the function r in
Exercise 86(a). Explain the motivation of the proof of
Cauchy’s Mean Value Theorem.
88. Use Cauchy’s Mean Value Theorem to prove the first
form of l’Ho
ˆ
pital’s Rule (Theorem 1).
Calculator/Computer Exercises
c In each of Exercises 89292, investigate the given limit
numerically and graphically. b
89. lim
x-0
ð1 2 cos ðxÞÞ=sin ðxÞ
2
90. lim
x-0
tanð2 sinðxÞÞ=sinð2 tanðxÞÞ
4.7 l’Ho
ˆ
pital’s Rule 347