
INSIGHT
The minus sign in the expression FðxÞj
x5 b
x5 a
5 FðbÞ2 FðaÞ is the source of
many algebraic errors. It is a good idea to enclose F (a) in parentheses when it is negative or
when it involves a sum of terms. Doing so will help you distribute the minus sign correctly.
QUICK QUIZ
1. If fs
1
, s
2
, s
3
, s
4
g is a choice of points associated with the order 4 uniform partition
of the interval [2 1, 2], what is the smallest possible value that can be chosen
for s
3
? The largest?
2. What are the lower and upper Riemann sums for f ( x ) 5 x
2
when the order 4
uniform partition of [21, 2] is used?
3. Evaluate
R
2
21
ð3x
2
2 2xÞdx.
4. True or false:
R
b
a
f ðxÞdx 5
R
b
a
f ðuÞdu.
5. True or false:
R
b
a
f ðuÞdx 5
R
b
a
f ðxÞdu.
Answers
1. Smallest: 1/2; Largest: 5/4 2. Lower: 45/32; Upper: 327/64 3. 6
4.
True 5. False
EXERCISES
Problems for Practice
c In Exercises 124, for the given function f, interval I, and
uniform partition of order N:
a. Evaluate
the Riemann sum R( f, S) using the choice of
points S that consists of the midpoints of the subintervals
of I.
b. Evaluate the definite integral that R( f, S) approximates. b
1. f (x) 5 1/x S5 f4,
8, 12g, I 5 [2, 14], N 5 3
2. f (x) 5 3 2 x
2
/2 S5 f24, 22, 0g, I 5 [25, 1], N 5 3
3. f (x) 5 x
2
S5 f21, 1, 3, 5g, I 5 [22, 6], N 5 4
4. f (x) 5 x
2
1 x S5 f23, 1, 5, 9g, I 5 [25, 11], N 5 4
c In Exercises 528, for the given function f,
interval I, and
uniform partition of order N:
a. Evaluate
the Riemann sum R( f, S) using the choice of
points S that consists of the left endpoints of the sub-
intervals of I.
b. Evaluate the definite integral that R( f, S) approximates. b
5. f (x) 5 x
3
1 4x S 5 f1, 3, 5g, I 5 [1, 7], N 5 3
6. f (x) 5 sin (x) S 5 f0, π/3, π2/3, πg, N 5 4
7. f (x) 5 jxjS5 f27, 24, 21, 2g, I 5 [27, 5], N 5 4
8. f (x) 5 1/x S5 f1, 5/4. 3/2, 7/4, 2g, I 5 [1, 9/4], N 5 5
c In Exercises 9212, for the given function f,
interval I, and
uniform partition of order N:
a. Evaluate
the Riemann sum R( f, S) using the choice of
points S that consists of the right endpoints of the sub-
intervals of I.
b. Evaluate the definite integral that R( f, S) approximates. b
9. f (x) 5 e
x
S5 f22, 0, 2g, I 5 [24, 2], N 5 3
10. f (x) 5 1/x S5 f1, 5/4, 3/2, 7/4, 2g, I 5 [3/4, 2], N 5 5
11. f (x) 5 cos (x) S5 f2π/3, π/3, π,5π/3g, I 5 [2π,5π/3],
N 5 4
12. f (x) 5 x
2
2 x S 5 f22, 21, 0, 1g, I 5 [23, 1], N 5 4
c In Exercises 13216, calculate the lower and upper Rie-
mann
sums for the given function f, interval I, and uniform
partition of order 2. b
13. f (x) 5 x
2
I 5 [21/2, 2]
14. f (x) 5 x
2
2 2x 1 2 I 5 [0, 3]
15. f (x) 5 cos (x) I 5 [0, 4π/3]
16. f (x) 5 x 1 1/xI5 [1/2, 2]
c In each of Exercises 17223, sketch the integrand of the
given
definite integral over the interval of integration. Eval-
uate the integral by calculating the area it represents. b
17.
R
3
1
ffiffiffi
2
p
dx
18.
R
5
1
ðcos
2
ðxÞ1 sin
2
ðxÞÞdx
19.
R
3
21
jxjdx
20.
R
3
22
ð2 1 signumðxÞÞdx
21.
R
2
21
ð1 1 xÞdx
22.
R
1
21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 x
2
p
dx
23.
R
3
22
jx 2 1jdx
c In each of Exercises 24244, evaluate the given definite
integral
by finding an antiderivative of the integrand and
applying Theorem 3. b
5.2 The Riemann Integral 397