
Painleve' Equations and Associated Polynomials
157
Fukutani, S., Okarnoto, K., and Umemura, H. (2000). Special polynomials and the
Hirota bilinear relations of the second and fourth Painlevk equations. Nagoya Math.
J., 159:179-200.
Gambier, B. (1910). Sur les kquations diffkrentielles du second ordre et du premeir
degre dont l'intkgrale gknkrale est
B
points critiques fixks. Acta Math., 33:l-55.
Gromak,
V.
I.
(1973). The solutions of Painlevk's third equation. Diff. Eqns., 9:1599-
1600.
Gromak, V.
I.
(1975). Theory of Painlevk's equation. Diff. Eqns., 11:285-287.
Gromak, V.
I.
(1976). Solutions of Painlevk's fifth equation. Diff. Eqns., 12:519-521.
Gromak, V.
I.
(1978a). Algebraic solutions of the third Painlevk equation. Dokl. Akad.
Nauk BSSR, 23:499-502.
Gromak, V.
I.
(197813). One-parameter systems of solutions of Painlevk's equations.
Diff. Eqns., 14:1510-1513.
Gromak, V.
I.
(1987). Theory of the fourth painlevk equation. Diff. Eqns., 23:506-513.
Gromak, V.
I.
(1999). Backlund transformations of Painlevk equations and their ap-
plications.
In
Conte, R., editor, The Painlevk Property, One Century Later, CRM
Series in Mathematical Physics, pages 687-734. Springer, New York.
Gromak, V.
I.
(2001). Backlund transformations of the higher order Painlevk equa-
tions. In Coley, A., Levi,
D.,
Milson, R., Rogers, C., and Winternitz, P., editors,
Backlund and Darboux transformations. The geometry of solitons (Halifax, NS,
1999), volume 29 of CRM Proc. Lecture Notes, pages 3-28. Amer. Math. Soc.,
Providence, RI.
Gromak, V.
I.,
Laine,
I.,
and Shimomura, S. (2002). Painlevk Differential Equations
in
the Complex Plane, volume 28 of Studies in Mathematics. de Gruyter, Berlin,
New York.
Gromak,
V.
I.
and Lukashevich, N.
A.
(1982). Special classes of solutions of Painlevk's
equations. Diff. Eqns., 18:317-326.
Iwasaki, K., Kajiwara, K., and Nakamura, T. (2002). Generating function associated
with the rational solutions of the Painlevk I1 equation. J. Phys. A: Math. Gen.,
35:L207-L211.
Iwasaki, K., Kimura, H., Shimomura, S., and Yoshida, M. (1991). From Gauss to
Painlevk: a Modern Theory of Special Functions, volume 16 of Aspects of Mathe-
matics E. Viewag, Braunschweig, Germany.
Jimbo, M. and Miwa, T. (1983). Solitons and infinite dimensional Lie algebras. Publ.
RIMS, Kyoto Univ., 19:943-1001.
Kajiwara, K. and Masuda,
T.
(1999a). A generalization of determinant formulae
for the solutions of Painlevk I1 and XXXIV equations.
J.
Phys. A: Math. Gen.,
32:3763-3778.
Kajiwara, K. and Masuda, T. (1999b). On the Umemura polynomials for the Painlevk
I11 equation. Phys. Lett., A260:462-467.
Kajiwara, K. and Ohta,
Y.
(1996). Determinantal structure of the rational solutions
for the painlevk I1 equation. J. Math. Phys., 37:4393-4704.
Kajiwara, K. and Ohta,
Y.
(1998). Determinant structure of the rational solutions for
the Painlevk
IV
equation.
J.
Phys. A: Math. Gen., 31:2431-2446.
Kametaka,
Y.
(1983). On poles of the rational solution of the Toda equation of
PainlevbII type. Proc. Japan Acad. Ser. A Math. Sci., 59:358-360.