
Painlevk Equations and Associated Polynomials
159
Okamoto, K. (1986). Studies on the Painlevk equations 111. Second and fourth Painlevk
equations, PII and
Av.
Math. Ann., 275:221-255.
Okamoto, K. (1987a). Studies on the Painlevk equations
I.
Sixth Painlevk equation
&I.
Ann. Mat. Pura Appl.
(4),
146:337-381.
Okamoto,
K.
(198713). Studies on the Painlevk equations 11. Fifth Painlevk equation
R..
Japan. J. Math., 13:47-76.
Okamoto, K. (1987~). Studies on the Painlevk equations IV. Third Painlevk equation
AII.
Funkcial. Ekvac., 30:305-332.
Sakai, H. (2001). Rational surfaces associated with affine root systems and geometry
of the Painlevk equations. Commun. Math. Phys., 220:165-229.
Schiff,
J.
(1995). Backlund transformations of MKdV and Painlevk equations. Non-
linearity, 7:305-312.
Tamizhmani, T., Grammaticos,
B.,
Ramani, A., and Tamizhmani, K. M. (2001). On
a class of special solutions of the Painlevk equations. Physica, A295:359-370.
Taneda,
M.
(2000). Remarks on the Yablonskii-Vorob'ev polynomials. Nagoya Math.
J., 159:87-111.
Taneda, M. (2001a). Polynomials associated with an algebraic solution of the sixth
Painlevk equation. Japan. J. Math., 27257-274.
Taneda, M. (2001b). Representation of Umemura polynomials for the sixth Painlev6
equation by the generalized Jacobi polynomials. In Kirillov, A. N., Tsuchiya, A.,
and Umemura, H., editors, Physics and Combinatorics, pages 366-376. World Sci-
entific, Singapore.
Temme, N. M. (1996). Special Functions. An Introduction to the Classical Functions
of Mathematical Physics. Wiley, New York.
Umemura, H. (1998). Painlevk equations and classical functions. Sugaku Expositions,
11:77-100.
Umemura, H. (2000). On the transformation group of the second Painlev6 equation.
Nagoya Math. J., 157:15-46.
Umemura,
H.
(2001). Painlevk equations in the past 100 years. AMS Translations,
204:81-110.
Umemura, H. (2003). Special polynomials associated with the Painlevk equations.
I.
In Vinet,
L.
and Winternitz, P., editors, Theory of Nonlinear Special Functions: the
Painleve' Transcendents (Montreal, Canada, 1996), CRM Series in Mathematical
Physics. Springer-Verlag, New York. To appear.
Umemura, H. and Watanabe, H. (1997). Solutions of the second and fourth Painlev6
equations
I.
Nagoya Math. J., 148:151-198.
Umemura, H. and Watanabe,
H.
(1998). Solutions of the third Painlevk equation
I.
Nagoya Math. J., 151:l-24.
Veselov, A. P. and Shabat, A.
B.
(1993). A dressing chain and the spectral theory of
the Schrodinger operator. hct. Anal. Appl., 271-21.
Vorob'ev, A.
P.
(1965). On rational solutions of the second Painlevk equation. Diff.
Eqns., 1:5&59.
Watanabe,
H.
(1995). Solutions of the fifth Painlevk equation
I.
Hokkaido Math. J.,
24:231-267.
Yablonskii, A.
I.
(1959). On rational solutions of the second Painlev6 equation. Vesti
Akad. Navuk. BSSR Ser.
Fiz.
Tkh. Nauk., 3:30-35. In Russian.
Yamada,
Y.
(2000). Special polynomials and generalized Painlev6 equations. In Koike,
K., Kashiwara, M., Okada, S., Terada, I., and Yamada,
H.
F.,
editors, Combina-