
8500 
characters, and the  25-inch CRT  is capable of 
over 
15 
000 
characters.  Since  these  characters  are 
actually stored on the face 
of 
the CRT until erased, no 
solid-state  memory  is  required  to  refresh  them. 
Another advantage of this type of CRT 
is 
that when a 
line is scanned with the writing gun at low beam cur- 
rent, the collector current will be a function 
of 
whether 
the area scanned is written or not. This signal current 
can be  amplified and processed to  produce  an elec- 
tronic image of  the written areas. This image can be 
fed into a copy device for producing a hard copy of the 
display. 
REFERENCES 
&. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
1. 
A. 
S. 
Gilmour,  Jr., 
Microwave 
Tubes  (Artech 
House, Inc., Nonvood, MA, 
1986). 
9 
G. 
A. Haas, A. Shih, and R. 
E. 
Thomas, 
Applica- 
tion 
of 
Suqace Science 
2,293-321  (1979). 
A. 
Shih and G. A. Haas, 
Appl. 
Surf. 
Sci. 
2,  164- 
172 (1979). 
A.  Shih and G. A. Haas, 
Appl. 
Surf. 
Sci. 
2, 275- 
283 (1979). 
A.  M.  Shroff, “Review of  dispenser  cathodes,” 
Revue  Technique  Thomson-CSF 
23,  947-1026 
(1991). 
C. R. 
K. 
Manian, 
G. 
A.Haas, and A.  Shih, 
Appl. 
Surf: Sci. 
24,391 (1985). 
M. C. Green. 
Technical Report RADC-TR-81-211, 
July 
1981. 
TriService/NASA  Cathode  Life  Test  Facility 
Annual  Report,  Naval  Surface  Warfare  Center, 
Crane Division, Crane 
IN. 
W. 
Mueller, 
IEEE  Transactions  on  Electron 
Devices 
36, 180-187  (1989). 
R. E. Thomas, J. 
W. 
Gibson, G. A. Haas, and 
R. 
H. 
Abrams, 
IEEE Transactions on Electron Devices 
J.  Hasker, J.  van  Esdonk,  and  J. 
E. 
Crombeen, 
Appl. Surf: Sci. 
26, 173 (1986). 
G.  Gartner, P.  Geittner,  H.  Lydtin, and A.  Ritz, 
Appl. Surf: Sci. 
111, 
11 (1997). 
S. M. 
Sze, 
Physics 
of 
Semiconductor Devices, 
2d 
ed. (Wiley, New York, 
1981). 
A.  Modinos, 
Field,  Thermionic, and  Secondary 
Electron  Emission  Spectroscopy 
(Plenum,  New 
York, 
1984). 
R. H. Fowler and L. 
W. 
Nordheim, 
Proc. R. 
SOC. 
London 
Ser. 
A 
119, 173 (1928). 
E. 
L.  Murphy and R. H.  Good, 
Phys. Rev. 
102, 
1464 (1956). 
C. A. Spindt, 
I. 
Brodie, 
L. 
Humphrey, 
E. 
R. 
West- 
erberg, 
J. 
Appl. Phys. 
47,5248 (1976). 
C. Bandis and 
B. 
B. Pate, 
Appl. Phys. Lett 
69, 366 
37,850-861  (1990). 
__. 
21. 
S. 
T. Purcell, 
V. 
T.  Binh, 
R. 
Baptist, “Nanoprotru- 
sion  model  for  field  emission 
from  integrated 
microtips,” 
J. 
Vac. Sci. Technol. 
B15, 1666 (1997). 
22. 
W. 
A. 
Mackie, T. Xie, and P. 
R. 
Davis, “Transition 
metal carbide field emitters for field-emitter array 
devices and high current applications,” 
J. 
Vac. Sci. 
Technol. 
B17,613 (1999). 
23. 
W. 
Zhu, C. Bower, 
0. 
Zhou, 
G. 
Kochanski, and 
S. 
Jin,Appl. 
Phys. Lett. 
75,875 (1999). 
24. 
J. 
Robertson, “Field  emission from  carbon  sys- 
tems,” 
Mat. Res. SOC. Symp. Proc. 
Vol. 
621 
(Materi- 
als 
Research Society, Warrendale, PA, 
2000), 
R1.l. 
25. 
D. R. Whaley, 
B. 
M. Gannon, 
C. 
R. Smith, C. 
M. 
Armstrong, and 
C. 
A. Spindt, “Application 
of 
field 
emitter  arrays  to  microwave  power  amplifiers,” 
IEEE Trans. Plas. 
Sci. 
28,727 (2000). 
26. 
K. L.  Jensen,  R.  H.  Abrams,  and R. 
K. 
Parker, 
“Field  emitter  array  development  for  high  fre- 
quency applications,” 
J. 
Vac. Sci.  Technol. 
B16, 
749 (1998). 
27. 
C. 
M. 
Marrese, J. E. Polk, K. L. Jensen, A. D. Gal- 
limore, C. A. Spindt, R. L. 
Fink, 
and W.  D. Palmer, 
“Performance of  field emission cathodes in xenon 
electric propulsion system environments,” chapter 
11 
in 
Micropropulsion 
for 
Small Spacecraft 
(Vol. 
187 
of  Progress in Astronautics and Aeronautics), 
M. 
M. 
Micci, A. 
D. 
Ketsdever (eds.)  (American 
Institute of Aeronautics and Astronautics, Reston, 
VA, 
2000). 
28. 
A. 
Ghis, R.  Meyer, 
P. 
Rambaud, 
F. 
Levy, and T. 
Leroux,  “Sealed  vacuum  devices-Fluorescent 
microtip displays,” 
IEEE Trans. Electron. Devices 
38,2320 (1991). 
29. 
A. A.  Talin, K. A.  Dean, and J. E. Jaskie, “Field 
emission displays: A critical review,” to appear in 
Vacuum Microelectronics: 
A 
Special Issue 
of 
Solid 
State Electronics 
(2001). 
30. 
D. 
W. 
Jenkins, “Emission area of  a field emitter 
array,” 
IEEE  Trans.  Electron.  Devices 
40, 
666 
(1993). 
31. 
R. 
L. 
Hartman, 
W. 
A.  Mackie, and P.  R. Davis, 
“Use 
of 
boundary element methods in field emis- 
sion computations,” 
J. 
Vac. Sci. Technol. 
B12, 754 
(1994). 
32. 
K. L. Jensen, “Field emitter arrays for plasma and 
microwave source applications,” 
Phys. Plasmas 
6, 
2241 (1999). 
33. 
C. Constancias and R. Baptist, “Emission observa- 
tion of  a microtip cathode array with an electro- 
static-lens projector: Statistical approach,” 
J. 
Vac. 
Sci. Technol. 
B16,841 (1998). 
34. 
R. Schlesser, 
M. 
T. McClure, B. 
L. 
McCarson, and 
Z. 
Sitar, “Bias  voltage  dependent  field-emission 
energy distribution analysis of wide band-gap field 
emitters,” 
J. 
Appl. Phys. 
82,5763 (1997). 
( 
19 
Y 
6). 
35. 
C. 
A. Spindt, C. 
E. 
Holland, 
P. 
R. Schwoebel, and 
I. 
Brodie,  “Field-emitter-array  development  for 
microwave  applications,” 
J. 
Vac.  Sci.  Technol. 
B14, 1986 (1996). 
19. 
R. Stratton, 
Phys. Rev. 
135, A794 (1964). 
20. 
C. A.  Spindt, 
I. 
Brodie, 
L. 
Humphrey, E. R. West- 
erberg, 
J. 
Appl. Phys. 
47,5248 (1976).