
8500
characters, and the 25-inch CRT is capable of
over
15
000
characters. Since these characters are
actually stored on the face
of
the CRT until erased, no
solid-state memory is required to refresh them.
Another advantage of this type of CRT
is
that when a
line is scanned with the writing gun at low beam cur-
rent, the collector current will be a function
of
whether
the area scanned is written or not. This signal current
can be amplified and processed to produce an elec-
tronic image of the written areas. This image can be
fed into a copy device for producing a hard copy of the
display.
REFERENCES
&.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
1.
A.
S.
Gilmour, Jr.,
Microwave
Tubes (Artech
House, Inc., Nonvood, MA,
1986).
9
G.
A. Haas, A. Shih, and R.
E.
Thomas,
Applica-
tion
of
Suqace Science
2,293-321 (1979).
A.
Shih and G. A. Haas,
Appl.
Surf.
Sci.
2, 164-
172 (1979).
A. Shih and G. A. Haas,
Appl.
Surf.
Sci.
2, 275-
283 (1979).
A. M. Shroff, “Review of dispenser cathodes,”
Revue Technique Thomson-CSF
23, 947-1026
(1991).
C. R.
K.
Manian,
G.
A.Haas, and A. Shih,
Appl.
Surf: Sci.
24,391 (1985).
M. C. Green.
Technical Report RADC-TR-81-211,
July
1981.
TriService/NASA Cathode Life Test Facility
Annual Report, Naval Surface Warfare Center,
Crane Division, Crane
IN.
W.
Mueller,
IEEE Transactions on Electron
Devices
36, 180-187 (1989).
R. E. Thomas, J.
W.
Gibson, G. A. Haas, and
R.
H.
Abrams,
IEEE Transactions on Electron Devices
J. Hasker, J. van Esdonk, and J.
E.
Crombeen,
Appl. Surf: Sci.
26, 173 (1986).
G. Gartner, P. Geittner, H. Lydtin, and A. Ritz,
Appl. Surf: Sci.
111,
11 (1997).
S. M.
Sze,
Physics
of
Semiconductor Devices,
2d
ed. (Wiley, New York,
1981).
A. Modinos,
Field, Thermionic, and Secondary
Electron Emission Spectroscopy
(Plenum, New
York,
1984).
R. H. Fowler and L.
W.
Nordheim,
Proc. R.
SOC.
London
Ser.
A
119, 173 (1928).
E.
L. Murphy and R. H. Good,
Phys. Rev.
102,
1464 (1956).
C. A. Spindt,
I.
Brodie,
L.
Humphrey,
E.
R.
West-
erberg,
J.
Appl. Phys.
47,5248 (1976).
C. Bandis and
B.
B. Pate,
Appl. Phys. Lett
69, 366
37,850-861 (1990).
__.
21.
S.
T. Purcell,
V.
T. Binh,
R.
Baptist, “Nanoprotru-
sion model for field emission
from integrated
microtips,”
J.
Vac. Sci. Technol.
B15, 1666 (1997).
22.
W.
A.
Mackie, T. Xie, and P.
R.
Davis, “Transition
metal carbide field emitters for field-emitter array
devices and high current applications,”
J.
Vac. Sci.
Technol.
B17,613 (1999).
23.
W.
Zhu, C. Bower,
0.
Zhou,
G.
Kochanski, and
S.
Jin,Appl.
Phys. Lett.
75,875 (1999).
24.
J.
Robertson, “Field emission from carbon sys-
tems,”
Mat. Res. SOC. Symp. Proc.
Vol.
621
(Materi-
als
Research Society, Warrendale, PA,
2000),
R1.l.
25.
D. R. Whaley,
B.
M. Gannon,
C.
R. Smith, C.
M.
Armstrong, and
C.
A. Spindt, “Application
of
field
emitter arrays to microwave power amplifiers,”
IEEE Trans. Plas.
Sci.
28,727 (2000).
26.
K. L. Jensen, R. H. Abrams, and R.
K.
Parker,
“Field emitter array development for high fre-
quency applications,”
J.
Vac. Sci. Technol.
B16,
749 (1998).
27.
C.
M.
Marrese, J. E. Polk, K. L. Jensen, A. D. Gal-
limore, C. A. Spindt, R. L.
Fink,
and W. D. Palmer,
“Performance of field emission cathodes in xenon
electric propulsion system environments,” chapter
11
in
Micropropulsion
for
Small Spacecraft
(Vol.
187
of Progress in Astronautics and Aeronautics),
M.
M.
Micci, A.
D.
Ketsdever (eds.) (American
Institute of Aeronautics and Astronautics, Reston,
VA,
2000).
28.
A.
Ghis, R. Meyer,
P.
Rambaud,
F.
Levy, and T.
Leroux, “Sealed vacuum devices-Fluorescent
microtip displays,”
IEEE Trans. Electron. Devices
38,2320 (1991).
29.
A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field
emission displays: A critical review,” to appear in
Vacuum Microelectronics:
A
Special Issue
of
Solid
State Electronics
(2001).
30.
D.
W.
Jenkins, “Emission area of a field emitter
array,”
IEEE Trans. Electron. Devices
40,
666
(1993).
31.
R.
L.
Hartman,
W.
A. Mackie, and P. R. Davis,
“Use
of
boundary element methods in field emis-
sion computations,”
J.
Vac. Sci. Technol.
B12, 754
(1994).
32.
K. L. Jensen, “Field emitter arrays for plasma and
microwave source applications,”
Phys. Plasmas
6,
2241 (1999).
33.
C. Constancias and R. Baptist, “Emission observa-
tion of a microtip cathode array with an electro-
static-lens projector: Statistical approach,”
J.
Vac.
Sci. Technol.
B16,841 (1998).
34.
R. Schlesser,
M.
T. McClure, B.
L.
McCarson, and
Z.
Sitar, “Bias voltage dependent field-emission
energy distribution analysis of wide band-gap field
emitters,”
J.
Appl. Phys.
82,5763 (1997).
(
19
Y
6).
35.
C.
A. Spindt, C.
E.
Holland,
P.
R. Schwoebel, and
I.
Brodie, “Field-emitter-array development for
microwave applications,”
J.
Vac. Sci. Technol.
B14, 1986 (1996).
19.
R. Stratton,
Phys. Rev.
135, A794 (1964).
20.
C. A. Spindt,
I.
Brodie,
L.
Humphrey, E. R. West-
erberg,
J.
Appl. Phys.
47,5248 (1976).