
you are here 4 471
estimating populations and samples
This is a slightly different problem from last time. We’re told what the
population mean and variance are for the packets of gumballs, and
we have a sample of packets we need to figure out probabilities for.
Instead of working out probabilities for the sample proportion, this
time we need to work out probabilities for the sample mean.
Before we can work out probabilities for the sample mean, we need to
figure out its probability distribution. Here’s what we need to do:
Look at all possible samples the same size as the one we’re
considering.
If we have a sample of size n, we need to consider all possible samples of
size n. There are 30 packets of gumballs, so in this case, n is 30.
11
Look at the distribution formed by all the samples, and
find the expectation and variance for the sample mean.
Every sample is different, and the number of gumballs in each packet
varies.
22
Once we know how the sample mean is distributed, use it to
find probabilities.
If we know how the means of all possible samples are distributed, we can
use it to find probabilities for the mean in a random sample, in this case
the, packets of gumballs.
33
Let’s take a look at how to tackle this.
The population in this case is
all the packets of gumballs.
The sample comprises 30
such packets.
We need probabilities for the sample mean